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Abstract 
 
The paper presents the Fault Detection and Diagnosis (FDD) approach for water networks developed 
within the Waternomics project. In particular, the FDD system developed is based on the hydraulic 
modeling of the water network (done using the EPANET software) that is used to the train a Anomaly 
Detection With fast Incremental ClustEring (ADWICE) algorithm which in turns is applied to real time 
data of water flow and pressure monitored in the network to infer performance and detect leaks and 
operation anomalies. The developed FDD system is particularly useful when more than one parameter 
needs to be considered at the same time to determine if an anomaly or fault is in place in a complex water 
network. For a first evaluation, simulated training scenarios have been developed and tested for Linate 
airport (Milan - Italy) water network and the results are presented in this paper. WATERNOMICS is an 
EU FP7 research project and the key problem addressed is the lack of water information, management 
and decision support tools that present meaningful and personalized information about usage, price, and 
availability of water in an intuitive and interactive way to end users. On average water networks in EU 
have leakages and inefficiencies that results in 20-30% water losses. As such, new technologies and 
leakages detection methods are needed to solve this issue, to make the EU more sustainable and in this 
context the FDD method presented can be helpful. 

Keywords: ADWICE, leak detection, model based FDD, water saving 
 

 
 

                                                 
Selection and peer-review under responsibility of the ECOMONDO 
 Corresponding author: e-mail: domenico.perfido@r2msolution.com.com 
 



 
Perfido et al./Procedia Environmental Science, Engineering Management, 3, 2016, 3-4, 129-138 

 

130 
 

 
1. Introduction 
 

The need for an efficient Water Management System (WMS) is strongly felt by water 
utilities, municipalities and in general by corporates that have to face every day with problems 
dealing with water usage and supply. Therefore, the basic idea to develop an automated system 
to implement the fault detection in the water network at an early stage is essential to manage 
the water resource in a sustainable way by avoiding both the waste of the natural resource and 
the waste of money. Whichever water network we consider the leakages exist; and they have 
to be localized and measured and solved.  

This problem is more severe when we have to face cases in which large water network 
are implied and where, due the many variables coming into play, it could be very difficult to 
detect anomalies or fault in the system. In these cases we need to adopt more sophisticated 
fault detection techniques that are designed to cope with a larger features set and a Model 
based FDD could be appropriate. This is the case study addressed in the WATERNOMICS 
project at the Linate airport (Milan – Italy) water network where for the first time we are 
working toward putting together a hydraulic model simulation with an FDD algorithm 
(ADWICE) to detect abnormality in the operational phase of the water network. The automated 
FDD method introduced in this paper is suitable for large water networks for this reason the 
approach serves as a first step toward its implementation at Linate when sensor data becomes 
available.  

The fault detection method proposed is made up of 5 phases described in the following 
Fig. 1. 
 

 
 

Fig. 1. Waternomics Model Based FDD Methodology 
 

A short description of each phase is provided: 
Phase 1 – Building Hydraulic reference model 
In this phase, technical information is used to provide knowledge about the water 

network and for estimating the water demand. Information required to attain an accurate 
hydraulic model includes: pipe geometry, material types, age and an inventory of the buildings 
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and their water equipment.  
Phase 2 – Monitoring real water network 
In this phase it is necessary to implement water meters installation in the network with 

the objective to get data to implement the training of the FDD algorithm ADWICE.  
Phase 3 – ADWICE Algorithm 
The FDD algorithm ADWICE (Anomaly Detection With fast Incremental ClustEring) 

is a clustering-based anomaly detector that has been developed in an earlier project targeting 
critical infrastructures protection. Originally designed to detect anomalies on network traffic 
sessions using features derived from TCP or UDP packets ADWICE has been adapted in this 
paper for the drinking water network and it is useful to determine if an anomaly or fault is in 
place in a complex water network. This class of algorithms is based on modeling the system 
selecting the best set of parameters that characterize the operational conditions (in our case the 
flow rate and the pressure) assuming normal operation, i.e. absence of problems (leaks, faults, 
etc.). This model is used as a comparison baseline with the operational values observed by the 
water sensors installed in the network in real time.  

Phase 4 – Data analysis 
If system under observation is not found to be operating in the modeled normal region 

and the deviation between the normality and the current situation exceeds a certain threshold, 
an anomaly is detected and an alarm is raised.  

Phase 5 – Dashboard visualization 
A notification event is raised through the Waternomics Platform to inform the users 

about the anomaly detected. The users will have the option to act immediately on the 
notification.  
 
2. Water network modeling and ADWICE training 
 

Water network information, as pipes geometry material and age, are necessary in this 
phase. This kind of information can be gathered both through design documents study and on 
site surveys. In Linate airport, 12 technical meetings have been held in order to get an accurate 
knowledge of the WDS (Water Distribution System) and its characteristics like the pumping 
stations system, the materials of the pipes, the spot height map of the pilot area and the depth 
of installation of pipelines. For estimating the water demand, an accurate survey of all the 
buildings within the pilot area was also conducted in order to develop, for each building, an 
inventory of the water equipment installed on each floor.  

The UNI EN 9182/2008 was utilized in order to get, for each building, a corresponding 
water demand. The UNI EN 9182/2008 is an Italian law that defines design, installation, 
testing and management criteria for hot and cold water supply and it is generally used in the 
design and sizing of water pipes through the calculation of the estimated out flow rate. The 
water demand is estimated by conducting a loading units methodology. Loading Unit value is 
assumed conventionally according to the flow of a delivery point, taking into account its 
characteristics, its frequency of use and the simultaneous utilization of the other water 
appliances installed in the water distribution network inside the building. The method basically 
consists in assigning to each water equipment a load unit.  

Figure 2 (extracted from UNI EN 9182/2008), has been used to assign the load units. 
The first column lists the appliances, the second is the typology of the water fixture, the third 
reports in order the Load unit for cold water, hot water and the total of hot plus cold water.  As 
for example for the washbasin we have to consider the first line and assign the load unit 
corresponding to the total of hot plus cold water (2,00 U.L.). 
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Fig. 2. Unit Load methodology – image extracted from UNI EN 9182/2008 
 
By knowing the loads units for each building, it is possible to obtain the estimated 

global water demand by applying the conversion presented in Figure 3 (extracted from UNI 
EN 9182/2008). These data are valid for public use buildings (offices, schools, hotels, 
restaurants). 
 

 
 

Fig. 3. Unit Load conversion – image extracted from UNI EN 9182/2008 

 
The geometry of the pipes in the water network, the materials, the depth of installation, 

and the water demand calculated in accordance to UNI EN 9182/2008 are all input data for the 
EPANET software and for the development of the hydraulics model of the WDS. The outputs 
of the EPANET model that are helpful to implement the reference performance metrics are: 
pressure in the junctions (nodes) and flow in the pipes. Figure 4 shows the hydraulic model of 
the Linate Airport WDS. 
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Fig. 4. Linate Airport water network model simulation with EPANET tool 
 

The model is composed of 149 nodes and 159 links and simulates the entire water 
network of the Linate airport for a total length of about 10 km of water network. For the 
development of this hydraulic model a lot of information have been collected both with the 
documents made available by SEA (the airport operator) and also through physical surveys. 
To implement the simulation the Hazen-Williams formula has been used, while minor losses 
have been neglected.  

The proposed model based FDD requires data from the meters installed in place in order 
to create a baseline through which to get the ADWICE algorithm trained and/or tested. Due 
the fact that in Linate airport the installation of the meters necessary to implement the 
algorithm trainer is on going, the problem has been solved by getting data from virtual 
scenarios created ad hoc to implement the algorithm trainer. With the objective to create 
realistic scenarios, a categorization of the Linate airport building was carried out. The 
categorization was implemented by considering the typical working time of each building. The 
homogeneous categories individuated for this are the following: 

A. buildings with operation time from 6:00 am to 23:00 pm; 
B. buildings with operation time from 8:00 am to 18:00 pm; 
C. buildings with operation time 24/24 h. 

For each category, a different water demand has been considered: 
1) full water demand (100% demand pattern as identified before with UNI EN 

9182/2008); 
2) water demand corresponding to the 50% of the demand pattern identified with UNI 

EN 9182/2008); 
3) water demand corresponding to the 0% of the demand pattern identified with UNI 

EN 9182/2008). 
The combination of the above-mentioned categories and of the demand pattern has 

allowed us to consider 45 different scenarios summarized in Table 1. 
In the second step, a list of buildings served from the water supply has been identified. 

The number of buildings served by the water network in Linate airport is 36 and they have 
been named utilizing a codification number. For each scenario, more instances starting from 
of it have been generated by scaling down the water demand of a building at a time with a 
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factor ranging from 60% to 100% in steps of 10% of its estimated water demand, while keeping 
all the other buildings with the demand specified in the scenario. 

 
Table 1. Categorization of the Linate Airport buildings and first 45 scenarios 

 

 
 
As results from this two steps categorization methodology we have obtained 8.100 

scenarios (45 scenarios * 36 buildings * 5 scale factors) that are likely to be able to simulate, 
although not in-exhaustive way, a reasonable subset of the possible operating conditions that 
may occur in the water network and obtain an early feedback whether anomaly detection is 
feasible or not.  

The simulation of the full set of possible operating conditions would be too complex 
from the computational point of view and would include too many unrealistic conditions (e.g. 
if we want all the possible combinations by varying the demand of each building from 0 to 
100% in steps of 10% we should generate 11^36 scenarios, a huge number). Each of the 8.100 
instances simulated with the EPANET model of the Linate Water network provided us with 
data, in terms of pressure at nodes and flow at links, that we used to train the ADWICE 
algorithm. The above procedure allowed to have available data for the water network prior to 
the installation of the meters and the real time measurements. Again, this dataset is not 
exhaustive and may not capture all the real operating conditions but it is valid for the purpose 
of evaluating the effectiveness of the anomaly detection algorithm. As described in the 
following section, a script that performs the 8.100 simulations in one single batch has been 
developed. The output is a CSV file where each line is the output of the simulation of an 
instance of a scenario and the columns are pressures and flows.  

This file is given as input to ADWICE to build the normality model.  ADWICE needed 
to be configured to work properly with this dataset: first, a feature selection procedure was 
performed, selecting only the most significant nodes and links that show more variation; the 
order of the features is also important and we gave more priority to one that shows the highest 
variance, than the second and so on. Finally, as any clustering algorithm, the dataset needs to 
be studied to get an idea of the proper amount of clusters to be set. If the number is too low we 
get a more general model, with big clusters trying to cover scattered points that are quite far 
away from each other. This model would generalize too much and fail considering as normal 
anomalous points that fall in areas that should not be covered by any clusters.  

The other way round is not good either; if we let the algorithm create and use too many 
clusters we would over-fit the model to the training dataset creating little clusters around the 
given points. The algorithm would then correctly raise alarms with anomalous points falling 

A B C
scenario 1 1 1 1
scenario 2 1 0,5 1
scenario 3 1 0,5 0,5
scenario 4 1 0 0,5
scenario 5 1 0,5 0

scenario 6 0,5 1 1

scenario 7 0,5 0,5 1
scenario 8 0,5 0,5 0,5
scenario 9 0,5 0 0,5

scenario 10 0,5 0,5 0

scenario 11 0 1 1
scenario 12 0 0,5 1
scenario 13 0 0,5 0,5
scenario 14 0 0 0,5
scenario 15 0 0,5 0

1 100% Base demand 
0,5 50% Base demand
0 0% Base demand

LEGEND

A B C
scenario 16 1 1 1
scenario 17 0,5 1 1
scenario 18 0,5 1 0,5
scenario 19 0 1 0,5
scenario 20 0,5 1 0

scenario 21 1 0,5 1

scenario 22 0,5 0,5 1
scenario 23 0,5 0,5 0,5
scenario 24 0 0,5 0,5
scenario 25 0,5 0,5 0

scenario 26 1 0 1
scenario 27 0,5 0 1
scenario 28 0,5 0 0,5
scenario 29 0 0 0,5
scenario 30 0,5 0 0

A B C
scenario 31 1 1 1
scenario 32 0,5 1 1
scenario 33 0,5 0,5 1
scenario 34 0 0,5 1
scenario 35 0,5 0 1

scenario 36 1 1 0,5

scenario 37 0,5 1 0,5
scenario 38 0,5 0,5 0,5
scenario 39 0 0,5 0,5
scenario 40 0,5 0 0,5

scenario 41 1 1 0
scenario 42 0,5 1 0
scenario 43 0,5 0,5 0
scenario 44 0 0,5 0
scenario 45 0,5 0 0
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outside those clusters, but would then raise also too many false alarms when normal behaviour 
generates points that are just away from the closest cluster.   

ADWICE has a parameter that specifies the maximum amount of clusters it can use. 
This parameter is called M. Another important parameter is the threshold E it uses to accept 
new points outside the clusters. If E=1 it means no threshold, E=2 it means two times the size 
of the cluster etc. During training E is important to set how much a cluster can be stretched to 
embed the new point. During evaluation instead E is used to determine whether the algorithm 
should accept as normal or launch an alarm if the point is close (with a certain distance) to a 
cluster. To find a suitable range of values for M and E, we performed the following heuristic 
procedure: 

 set a value of M and E and launch the training of the algorithm to create the normality 
model; 

 check how many clusters it has use; 
 Test the anomaly detection using the same (fault-free) dataset.  

If the anomaly detector raises too many false alarms (we check the false positive rate 
FPR, which represents the percentage of good points wrongly classified as anomalies), we 
raise M and/or E. Once we stabilize the FPR, we check whether by increasing M the number 
of clusters used increases as well. If not, the model is over-fitted and we need to scale down 
M.   This procedure gives an idea of possible values for M and E. Usually these are further 
tuned during the validation phase trying the algorithm with known faults to see how it performs 
in terms of alarm detection (measured as detection rate DR – the percentage of anomalies 
correctly classified as such). The final values of M and E are selected in order to get a good 
trade-off between false positive rate and detection rate. 
 
3. Leakages scenarios development and ADWICE testing 
 
 In the same way, we generated “clean” scenarios that capture normal operating 
conditions for the WDS, to be able to test the effectiveness of the ADWICE as fault detector 
we need to develop some scenarios that contain leakages in the water network. In doing this, 
a methodology to simulate a leakage in the water network has been found and generally we 
can assume that the phenomenon of water leaks is governed by the relationship between the 
leakage rate (qi **) and pressure (pi): 
 

 (1) 
 
where: C is the coefficient of loss, β is the loss exponent. 

It is evident that reducing pressures allows to decrease, exponentially, lost volumes. 
 

 

 

 
 

a) b) 
 

Fig.5. Water loss at high pressure a) and at low pressure b) 
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In the EPANET model, the leakages have been simulated by introducing a leakage 

through the emitter coefficient in some junctions. The introduction of the emitter allow to 
simulate the outflow rate depend on the pressure (Figure 5). In this way, 10 leakage scenarios 
have been implemented by introducing the emitter coefficient in some junctions as shown in 
Table 2. 

Table 2. Leakages scenarios for Linate water network simulation 
 

 

 
With the same approach used to generate the normal dataset, we simulated a leakage at 

a time applying the emitter coefficient to the specified nodes. Each leakage is then produced 
in all the 8.100 scenarios as above. This gives us ten more files, one for each leakage scenarios, 
with 8.100 cases. To test the efficiency of the anomaly detection algorithm, we modified these 
files adding the 8.100 normal fault-free scenarios at the beginning of the files, letting the 8100 
with the leakage be after these. This gives us the possibility to compute the accuracy of the 
algorithm (percentage of instances correctly classified either as alarms or not).  EPANET is a 
Windows-based application and it allows modelling a water network and running a simulation 
from the graphical user interface (GUI). However, we need to simulate a high number of 
scenarios changing some input parameters (the demands at nodes) from one simulation to the 
other. To perform this task we created a C program that uses the libraries provided by the 
EPANET programmer’s Toolkit. These libraries allow programmers to open network models, 
run simulations a retrieve the results from custom programs without the need of the EPANET 
GUI. Our script is structured as following: 

 open the network input file which is exported from the model built using the GUI; 
 read the scenarios configurations (scenario number, value of A, B, C) from a file. For 

each of them 
o for each building at a time; 
o for each scale factor between 60% and 100%; 
 scale down the demands assigned to nodes according to their category (A, B, C); 
 scale further down the demand assigned to the current building according to the 

current scale factor; 
 add the leakage (if generating the validation dataset); 
 run the simulation; 
 write resulting pressures and nodes in a line in the input file. 

 
4. Results and discussion 
 

The Linate airport, given its large water network (about 10 Km), represents a good test 
site for the model based FDD. However, the lack of real measurement data represents an issue 

SCENARIOS
SP1 136

SP2 136 126
SP3 126 115 103

SP4 126 115 103 111
SP5 17 19 25 35 29 54 49 46

SP6 55 56 60 85 91 59 62

SP7 75 73 100 93 63 74
SP8 38 76 108 74 125 97

SP9 1 4
SP10 46 47 52 53

LEAKAGE SCENARIOS
NODE ID

Emitter coef.= 1
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and it has been solved, as mentioned above, through the implementation of 8.100 virtual 
scenarios to simulate the WDS in a large variety of operational environments. The study will 
be much more detailed in future where, after to have installed the meters in Linate airport, real 
time measurements and data will be available. However, the results obtained with the virtual 
simulation of 8.100 operational scenarios give to us the hope for a good functioning of the 
Model based FDD methodology applied to the real case.  

As an example, Table 3 reports the results of the validation of ADWICE with the 
leakage scenarios described above. As explained earlier, we had to tune the parameters M and 
E in order to get a trade-off between detection rate and false positive rate. In general, we want 
to have the minimum FPR and the maximum DR at the same time. In the test performed, we 
found that the lowest false positive rate we could obtain was as little as 0.01 (1%), but the 
detection rate was very low as well, being 30% on average. On the contrary, an 80% detection 
rate was achieved at the cost of a 10% false positive rate. Overall, we need to look at the 
accuracy, and the results presented in Table 3 provide the best average achieved. On average, 
the false positive rate is around 5%, the detection rate around 60% and the accuracy 80%. The 
results were obtained setting M=200 and E=3 for the training phase and E=1 for the validation 
phase. 

 

Table 3. Results of the Model Based FDD Methodology 
 

 
 
4. Concluding remarks 
 

This paper aim is to introduce a model based FDD method helpful in leakages and faults 
detection in water networks. The method is based on the analysis of both pressure and flow 
variation produced by leakage in the WDS, for this reason this technique differs from the others 
we can find in the literature because it is not based on the transient analysis of the pressure 
waves but on the comparison of real pressure and flow data with their estimation using the 
simulation of the mathematical network model. For a first evaluation, simulated training 
scenarios have been developed and tested.  

The results obtained in terms of False Positive Rate, Detection Rate and Accuracy, with 
the virtual simulation of 8.100 operational scenarios give to us the hope for a good functioning 
of the Model based FDD methodology applied to the real case. Next step is to test the method 
in a real case studio (Linate water network) by using the real time data gathered from the flow 
and pressure meters installed in the water network. 
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